

Denkwerkstatt für weniger: Emissionen, Energie- und Ressourcenverbrauch

Klimaneutral bis 2030 Einblicke in die "Modellregion Vorarlberg"

Nettonull – Energie – Ökonomie

Zürich, 16.1.24

Christof Drexel

"Modellregion Vorarlberg"

Wie das Projekt entstand:

- Verein TUN
- beauftragte Expert*innen-Gruppe
 - mit der Fragestellung der Machbarkeit
 - Modellierung
 - Roadmap
- Abstimmung mit Land Vorarlberg / Energieautonomie / Energieinstitut, ...

Warum Anführungszeichen?

Projekt wurde vom Land nicht (als gesamtes) übernommen

Herausforderung: Politische Mehrheit, die in die Akzeptanz der Bevölkerung vertraut

TUN

GreenDeal

Vorarlberg

MITGLIEDER

Prozess

Modellierung:

- ➤ Alle Emissionssektoren (Energie, andere THG, graue Emissionen)
- regionale Energieerzeugung und -verbräuche
- Ökonomie

Roadmap (www.tun.plus):

- 6 Emissionssektoren Mobilität, Gebäude, Industrie und Gewerbe, Ernährung und Landwirtschaft, Erneuerbare Energie, Negative Emissionen
- rund 70 Handlungsfelder mit quantifizierten Zielsetzungen und Maßnahmen
 - Vermeidungen, Verlagerungen, Substitutionen, ...
 - > Ordnungsrechtlich, Anreizsysteme, Engagement von Wirtschaft und Gesellschaft, ...
 - Ökonomische Betrachtungen: Betriebs- / Volkswirtschaftliche Sicht

Roadmap Modellregion Vorarlberg

Inhaltsverzeichnis [Verbergen] Einführung 1.1 Ausgangslage 1.2 Modellierung 1.2.1 Emissionen 1.2.2 Energieflüsse 1.2.3 Ökonomie 1.3 Zu dieser Wiki Emissionssektor Mobilität 2.1 Teilbereich M1: Energiebedarf für Landverkehr reduzieren und dekarbonisie 2.2 Teilbereich M2: Luftverkehr reduzieren 2.3 Teilbereich M3: Graue Emission Fahrzeuge und Infrastruktur reduzieren 3 Emissionssektor Gebäude 3.1 Teilbereich G1: Energie Raumwärme reduzieren und dekarbonisieren 3.2 Teilbereich G2: Verbrauch elektrischer Energie reduzieren 3.3 Teilbereich G3: Reduktion Graue Emissionen Errichtung Emissionssektor Industrie und Gewerbe 4.1 Teilbereich I1: Energie Prozesswärme reduzieren und dekarbonisieren 4.2 Teilbereich I2: Verbrauch elektrischer Energie reduzieren 4.3 Teilbereich I3: Emissionen aus F-Gasen reduzieren Emissionssektor Landwirtschaft und Ernährung 5.1 Teilbereich L1: Emissionen konsumentenseitig reduzieren 5.2 Teilbereich L2: Landwirtschaftliche Treibhausgase reduzieren 6 Erneuerbare Energieversorgung 6.1 Teilbereich E1: Erneuerbare elektrische Energie 6.2 Teilbereich E2: Grünes Gas bereitstellen 6.3 Teilbereich E3: Wärmelieferung über grüne Wärmenetze erhöhen 6.4 Teilbereich E4: Biomasse optimal nutzen 6.5 Teilbereich E5: Energie speichern Negative Emissionen (Entnahme und Speicherung von Kohlenstoff)

7.1 Teilbereich N1: Regional CO2 entnehmen

7.2 Teilbereich N2: Global CO2 entnehmen

Emissionssektor Mobilität

Die Emissionen der Mobilität entstehen größtenteils - global zu etwa drei verantwortlich; die Schifffahrt für weitere 10%. Der Schienenverkehr ist de auch bei Luftfahrt und Güterverkehr gibt es einige Hebel.

Teilbereich M1: Energiebedarf für Landverkehr reduzieren

Handlungsfeld M1.1: Personenverkehr vermeiden: Durch eine Redi und Jahr erreicht werden.

Handlungsfeld M1.2: Personenverkehr verlagern: Durch eine Verlag Reduktionseffekt von 0,22 Tonnen CO₂ pro Person und Jahr erreicht wer

Handlungsfeld M1.3: Personenverkehr elektrifizieren: Durch die vo Anstieg von 0,33 Tonnen pro Person und Jahr durch zusätzlichen Import v

Handlungsfeld M1.4: Güterverkehr vermeiden: Durch die Stärkung pro Person und Jahr erreicht werden kann.

Handlungsfeld M1.5: Güterverkehr verlagern: Durch eine Verlagerur Tonnen pro Person und Jahr erreicht werden.

Handlungsfeld M1.6: Güterverkehr elektrifizieren: Durch die vollstär gleichzeitigem Anstieg von 0,2 Tonnen pro Person und Jahr durch zusätzi

Teilbereich M2: Luftverkehr reduzieren

Handlungsfeld M2.1: Flugreisen vermeiden: Durch eine Reduktion von

Teilbereich M3: Graue Emission Fahrzeuge und Infrastruk

Handlungsfeld M3.1: Reduktion Fahrzeuge: Durch eine Reduktion de werden.

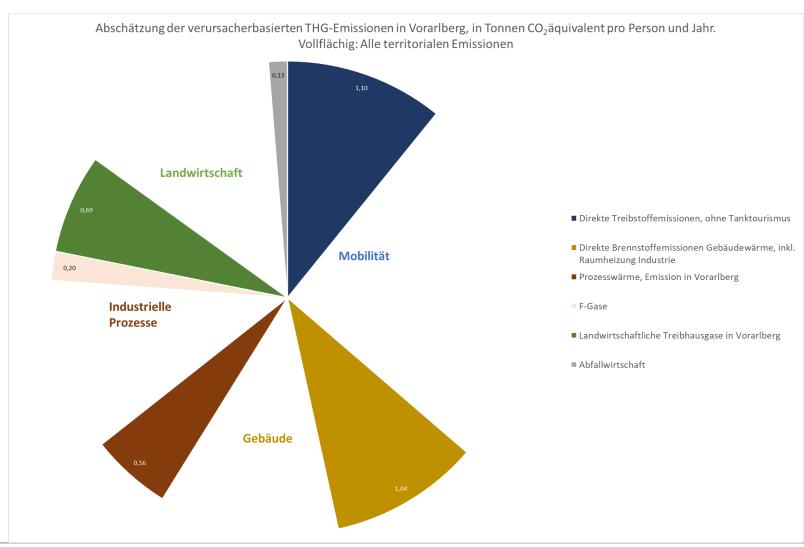
Handlungsfeld M3.2: Reduktion Graue Emissionen Infrastruktur: D 5 Allgemeine Anmerkungen

Handlungsfeld M1.1: Personenverkehr vermeiden

Für den Inhalt verantwortlich: Christoph Breuer

Mitarbeit: Martin Reis, Pia Blessing, Christof Drexel

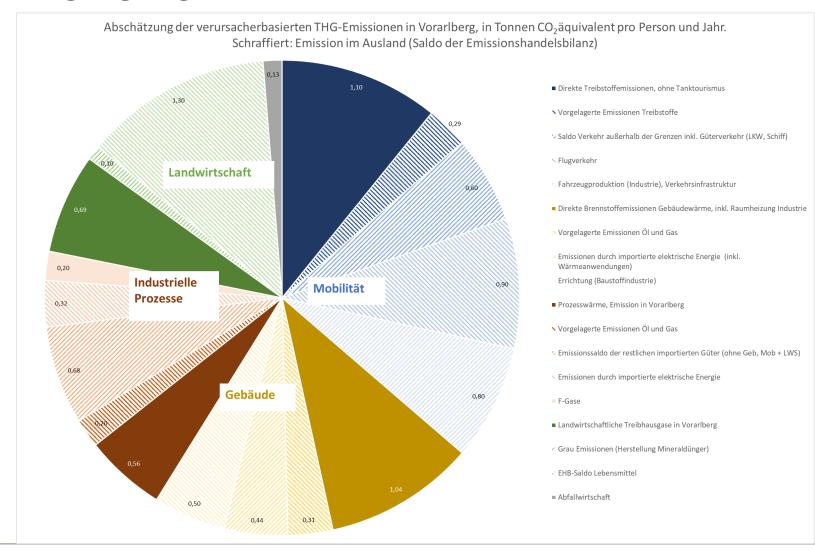
as Handlungsfeld mit seinen abgeleiteten Maßnahmen bezieht sich auf das Aktionsfeld 8.8 der Strategie der EA+

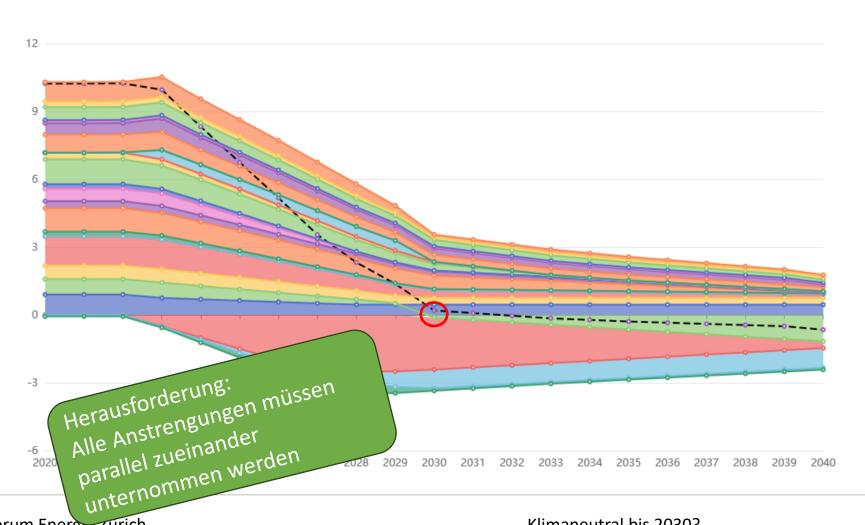

Inhaltsverzeichnis [Verbergen]

- 1 Status quo
- 1.1 Ausgangslage und Zielsetzung
- 1.2 Gesetze und Verordnungen, regional
- 1.3 Gesetze und Verordnungen, Bund und EU
- 1.4 Förderungen und Subventionen, regional
- 1.5 Förderungen und Subventionen, Bund und EU
- Maßnahmen
 - 2.1 Weniger und kürzere Wege (M1.1.1)
 - 2.2 Reduktionspotenziale im Arbeitsalltag heben (M1.1.2)
 - 2.3 Einwirkung auf den Bund
- Auswirkungen der Umsetzung
 - 3.1 ...auf die Ökonomie
 - 3.2 ...auf den Arbeitsmarkt
 - 3.3 Sonstige Auswirkungen
 - 3.3.1 Co-Benefits
 - 3.3.2 Nachteilhafte Nebenwirkungen
- 4 Partizipation
 - 4.1 Umsetzergruppe
 - 4.2 Interessensvertretungen, Netzwerke
 - 4.3 Technologie- und Lösungsanbieter
 - 4.4 Unabhängige FachexpertInnen

Klimaneutrales Vorarlberg: Ausgangslage

Das Energiemonitoring des Landes liefert Daten für die territorialen Emissionen:


- > Treibstoffe
- Öl und Gas für Raum- und Prozesswärme
- > F-Gase
- Landwirtschaftliche Treibhausgase


Klimaneutrales Vorarlberg: Ausgangslage

- ➤ territorial: 4-5 Tonnen CO₂/pax.a
- verursacherbasiert: 10-12 Tonnen
- zum Vergleich Bundesland
 Oberösterreich, territorial: ca. 18
 Tonnen

Herausforderung: Saubere Bilanzierung

Modellierung

- Das 1,5-K-Limit erlaubt uns noch eine Emission von rund 270 Gigatonnen CO₂e
- Pro Kopf entspricht das rund
 35 Tonnen im weltweiten
 Durchschnitt
- Wir müssen hierfür von derzeit rund 10 Tonnen pro Person und Jahr (verursacherbasiert) auf Nettonull im Jahr 2030 reduzieren

Entwicklung der Energieströme in Vorarlberg

Woher kommt die Energie in Zukunft und wie teilt sie sich auf?

Jahr 2020 Treibstoffe LKW Treibstoffe (fossil/Verbrenner) Treibstoffe PKW Erdölprodukte Elektrische Energie ÖPNV Heizöl Gas-/Ölbrenner Elektrische Energie MIV -Heizwerk Erdgas Gas-/Ölheizung Prozesswärme NT-Abwärme Biomasse (Kessel/Heizung) Biogene Brennstoffe & Scheitholz Fernwärme Angebot BHKW Großwärmepumpe - PW - Abwärme Industrie Großwärmepumpe - FW Fernwärme Übergabestation Abwärme Niedertemperatur Umgebungswärme Wärmepumpe Solarthermie Gebäudewärme Solarwärme Transport, Verbrauch Energieversorgung Wasserkraft Energetischer Inlandsverbrauch Strom - Photovoltaik Elektrische Energie - Windkraft Brennstoffzelle Elektrolyseur Elektrische Energie Export -Elektrische Energie Import

Eckpunkte Energie, zusammengefasst

- Mobilität
 - Reduktion MIV / Halbierung Fahrzeugbestand
 - Vermeidung / Verlagerung / Elektrifizierung Güterverkehr
- Gebäude
 - Sehr hohe Effizienz in Neubau und Sanierung
 - Sanierungsrate steigern, aber natürliche Lebenszyklen nicht relevant unterschreiten
 - Wärmenetze ausrollen und multimodal gestalten
 - dezentrale Wärmeversorgung über Wärmepumpen
 - Einsatz von Biomasse reduzieren; Biogas vermeiden.
- Industrie
 - Effizienz massiv erhöhen
 - Prozesswärme dekarbonisieren durch Groß-WP (bis ~ 100-150°C); Biomasse (<500) und Biogas (>500) bereitstellen
 - Abwärme bereitstellen!
- Erneuerbare Energien
 - massiver Ausbau PV
 - moderater Ausbau Wasserkraft
 - Biomasse für Industrie reservieren, Rest verstromen (sukzessiver Ausstieg aus der Raumwärme)
 - Biogas für Industrie reservieren
 - Flexibilisierung vorantreiben (E-Mobilität und Wärmepumpen nutzen)
 - (Saisonale) Speicherung zentral denken

Zulassungsstopp Verbrenner (PKW) möglichst umgehend - Investitionen in die richtige Infrastruktur Herausforderungen:

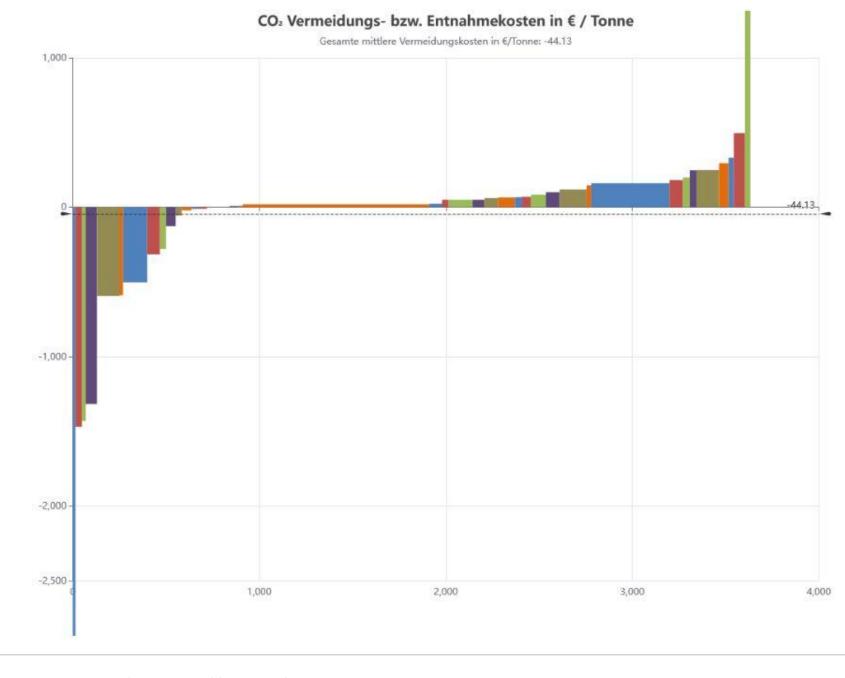
Herausforderung: Wirtschaftliche, aber kapitalintensive Sanierungen

Eckpunkte Ernährung / Landwirtschaft, negative Emissionen

- > Ernährung
 - > Trend zur vegetarischen / veganen Ernährung verstärken
 - \triangleright Emissionen direkt in der Landwirtschaft reduzieren (Methan \rightarrow Rinder, Lachgas \rightarrow Düngemanagement)
- Negative Emissionen
 - ➤ Waldmanagement / nachhaltige Forstwirtschaft / kein Vorratsabbau
 - Grüne Städte und Dörfer
 - Wiedervernässung von Mooren
 - ➤ Biokohle produzieren und in der Landwirtschaft nutzen
 - ➤ CO₂-Abscheidung bei Biomasse-Feuerungen

Herausforderung: Hohe Kosten der CO₂-Abscheidung Herausforderung:
Gesundheitsaspekt /
Gesundheitsaspekt /
persönlichen Gewinn von
klimafreundlicher Ernährung
vermitteln

Transformation konkret – Ökonomie

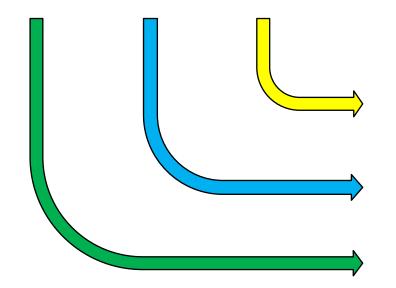

Ökonomische Auswertungen

- ➤ Je Handlungsfeld: CO₂-Vermeidungskosten
 - ➤ Bandbreite liegt zwischen -9000 und +1400 €/Tonne
 - > 90% der Handlungsfelder zwischen -500 und +300 €/Tonne
- ➤ Vielfach "negativ": CO₂-Reduktion ist profitabel
 - im Bereich der Reduktion (Videokonferenzen statt Flugreisen, Car-Sharing, ...),
 - > durch Effizienz-Technologien E-Mobilität, Wärmepumpen statt Direktstrom, ...
 - ➤ bei der Energieversorgung (PV, Wasserkraft, ...)
- Demgegenüber entstehen Kosten
 - bei der Grundstoffindustrie (z.B. grüner Stahl)
 - durch aufwendige Entnahme-Technologien (BECCS)
 - > wenn Fleisch aus Massentierhaltung durch Biofleisch ersetzt wird

Transformation konkret

Ökonomische Auswertungen

- ➤ In Summe überwiegt der ökonomische Nutzen
- Kosten entstehen in der Umsetzung und Begleitung der Transformation, aber es wird leistbar und vor allem volkswirtschaftlich vorteilhaft sein


Die Kaya-Identität (1997):

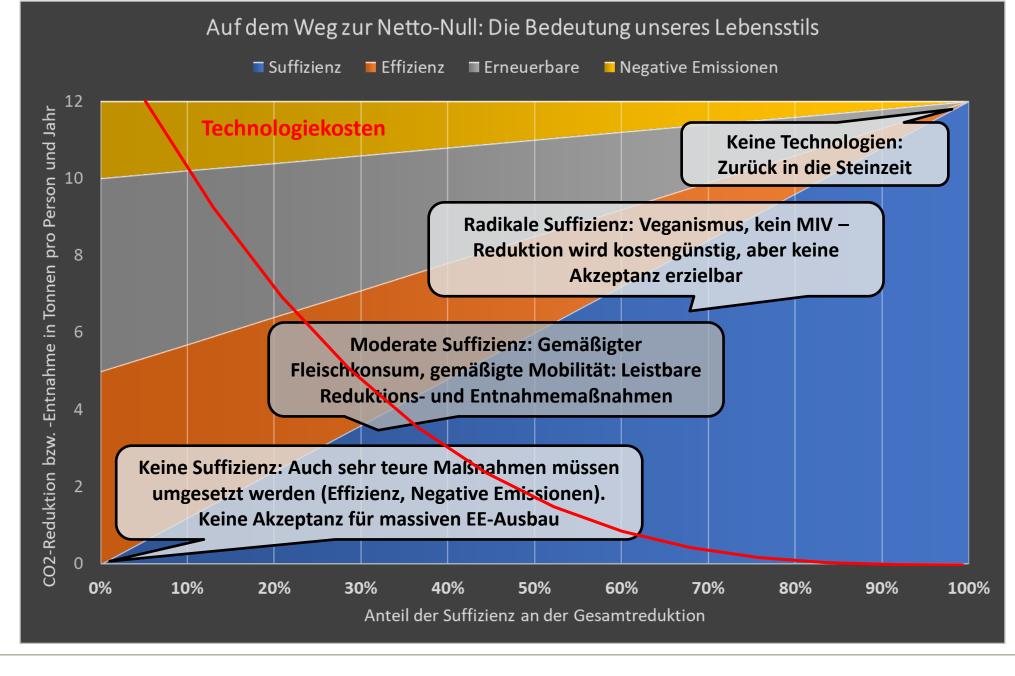
$$CO_2 \equiv B \times \frac{BIP}{B} \times \frac{E}{BIP} \times \frac{CO_2}{E}$$

B Bevölkerung

BIP Bruttoinlandsprodukt (€) E Energieeinsatz (kWh)

CO₂ Emission (kg)

Erneuerbare Energien


Effizienz

Suffizienz (Lebensstil)

Transformation konkret:

Was geht technologisch?

Welche Rolle spielt die Suffizienz? ("Verzicht oder Gesundheit?")

Highlights

- > Das Land ließ eine Biomasse-Strategie verfassen, die mit den Inhalten der Roadmap übereinstimmt.
- Im Bereich der Industrie ist eine Reihe von Dekarbonisierungs-Projekten in Umsetzung oder geplant.
- Eine vielversprechende Abwärmepotenzial-Studie ist in Arbeit; ein massiver Ausbau der Wärmenetze soll folgen.
- > Der PV-Ausbau erfolgt deutlich schneller als geplant.
- Die Produktion von Biokohle wurde etabliert.

Schlüsselfrage

Option 1:

Das Maximum an CO₂-Reduktion umsetzen – innerhalb der ökonomisch und gesellschaftlich etablierten Grenzen.

Option 2:

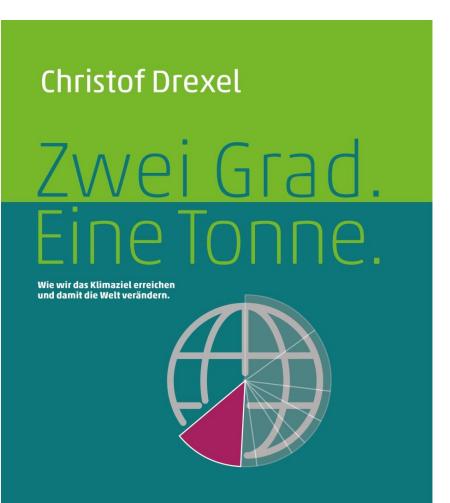
Die notwendige CO₂-Reduktion umsetzen – und die ökonomischen und gesellschaftlichen Rahmenbedingungen so anpassen, dass die Transformation sowohl in der Gesellschaft als auch in der Wirtschaft (überwiegend) Gewinner produziert.

Vielen Dank.

www.zwei-grad-eine-tonne.at

www.drexelreduziert.at

Denkwerkstatt für weniger: Emissionen, Energie- und Ressourcenverbrauch


www.klimavor.at

www.powernewz.ch

